A RTl C L E W) Check for updates

Inhibition mechanism of SARS-CoV-2 main
protease by ebselen and its derivatives
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The SARS-CoV-2 pandemic has triggered global efforts to develop therapeutics. The main
protease of SARS-CoV-2 (MPro), critical for viral replication, is a key target for therapeutic
development. An organoselenium drug called ebselen has been demonstrated to have potent
MPTC inhibition and antiviral activity. We have examined the binding modes of ebselen and its
derivative in MP© via high resolution co-crystallography and investigated their chemical
reactivity via mass spectrometry. Stronger MP™ inhibition than ebselen and potent ability to
rescue infected cells were observed for a number of derivatives. A free selenium atom bound
with cysteine of catalytic dyad has been revealed in crystallographic structures of MP'© with
ebselen and MR6-31-2 suggesting hydrolysis of the enzyme bound organoselenium covalent
adduct and formation of a phenolic by-product, confirmed by mass spectrometry. The target
engagement with selenation mechanism of inhibition suggests wider therapeutic applications
of these compounds against SARS-CoV-2 and other zoonotic beta-corona viruses.
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he recent emergence of severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) has resulted in a global

pandemic of coronavirus disease 2019 (COVID-19) with
confirmed infection cases of over 140 million and 3 million
fatalities as of April 2021. SARS-CoV-2 is the most devastating
zoonotic coronavirus to infect humans following SARS-CoV-1
and MERS-CoV (Middle East respiratory syndrome) which
emerged in 2002 and 2012, respectively!. Similar to the other
coronaviruses, SARS-CoV-2 primarily infects the respiratory
system and develops critical pneumonia that highly necessitates
ventilatory support and intensive care, particularly in elderly and
immunocompromised individuals?. Whilst there have been tre-
mendous strides forward in the development of vaccines, the
current roll-out is supply and time-limited. Several vaccines have
been developed and approved for mass immunity3. However,
some vaccines need to be stored at cryogenic temperatures that
may not be deployable in developing areas of the world. More-
over, some mutations in SARS-CoV-2 genome may impact the
effectiveness of vaccines to control the virus®°. These underline
the requirement for the parallel development of therapeutic
options for SARS-CoV-2 treatment.

SARS-CoV-2 is an enveloped, positive-sense, single-stranded
RNA virus with a large genome of about 30,000 nucleotides. The
whole genome of SARS-CoV-2 is 96% identical to a bat cor-
onavirus and closely related to SARS-CoV-1 with 80% sequence
identity®. Two overlapping polyproteins, ppla and pplab, are
encoded by the replicase gene (ORF 1a/1b) that constitutes two-
thirds of the genome. The remainder of the genome encodes for
accessory and structural proteins, such as the spike glycoprotein,
envelope protein, matrix protein and the nucleocapsid
phosphoprotein’. ppla and pplab are proteolytically digested
into 15 non-structural proteins (NSPs) by the two viral proteases.
The 33.8 kDa main protease (MP™) or NSP5 is responsible for
cleaving polyproteins at 11 cleavage sites giving NSP4-9 and
NSP12-15. The released NSPs form the viral RNA polymerase
complex are involved in replication and transcription of fresh
virus in the host. Due to vital function in SARS-CoV-2 life cycle
and absence of homologous proteins in human, MP™ has been
extensively explored by high-throughput screening of re-
purposed druggable compounds® and fragments® to devise
effective inhibitors aimed at arresting the growth of SARS-CoV-2
in host’s cell.

SARS-CoV-2 MP™ is a homodimeric enzyme consisting of
three domains®. The substrate-binding site with a catalytic dyad
of His4l and Cysl45 is located between chymotrypsin-like
domains I and picornavirus 3C protease-like domain II. Domain
III plays an important role in MP™ dimerization through a salt-
bridge interaction between protomers. Several inhibitors and
fragments have been co-crystallised and identified to block cat-
alytic cavity3-10.

Ebselen is an organoselenium molecule that can function as a
glutathione peroxidase and peroxiredoxin mimic!l. It has been
shown to form a seleno sulphide bond with thiol groups of
cysteine (Cys) on a number of proteins which results in anti-
inflammatory, anti-microbial and neuroprotective effects!>~14.
Moreover, ebselen is being investigated in clinical trials as a
potential therapy for stroke, hearing loss and bipolar disorder
with good safety profiles with no adverse effects!>~17. Recently,
ebselen was identified in high-throughput screen as a potential
hit of SARS-CoV-2 MP™ inhibitor with an ICs, between 0.67 and
2.1 uM3 18 Molecular dynamics simulations suggested that
ebselen is able to bind at two probable sites!®. One is at Cys145
within the catalytic cavity through a seleno sulphide bond, and
another is at the dimerization region. However, no experimental
data for the site of its binding in SARS-CoV-2 MP has become
available.

In our previous work, we have designed CNS penetrant
ebselen-based derivatives and demonstrated their good neuro-
protective effects and low cytotoxicity in cell-based and mouse
models of motor neuron disease?0. Here, ebselen and five deri-
vatives were assessed for their inhibition of SARS-CoV-2 MPr
and anti-coronaviral activity. Two of these ebselen-based sele-
nium compounds exhibit greater inhibitory effectiveness than
ebselen against MP™ enzyme and SARS-CoV-2 replication. We
show from co-crystallographic studies of MP™ enzyme with
ebselen and another potent compound (MR6-31-2) that these
compounds solely bind at the MP™ catalytic site by donating a
selenium atom, forming a covalent bond and blocking the
histidine-Cys catalytic dyad. We propose that the ebselen-enzyme
drug protein adduct is hydrolysed by the conserved water in
the catalytic pocket. The release of phenol by-product has been
confirmed by mass spectrometry studies of MP™ incubated with
compounds. This intriguing selenation mechanism of inhibition
and direct observation of covalent binding of the selenium atom
together with sub-micromolar antiviral activity provides a
rational for utilising ebselen as potential therapy and improving
selenium-based compounds using the ebselen scaffold for greater
anti-coronaviral activity.

Results

MPr® enzymatic and antiviral activities of ebselen and deriva-
tives. In our previous study, ebselen and some selenium-based
derivatives have were developed as neuroprotective agents in
relation to motor neuron disease?’. The co-crystalised structures
of those compounds with superoxide dismutase 1 were proven to
form a selenyl sulphide bond with Cysll1 at dimer interface.
Thus, ebselen and derivatives were considered for their reactivity
with Cys145 and their potential for impairing proteolytic activity
of MP™ in an attempt to arrest the growth of SARS-CoV-2. A
fluorescence resonance energy transfer assay was conducted to
evaluate the inhibition level against MP™ enzyme of ebselen and
five other selenium-based derivatives. Figure 1 shows chemical
structures, inhibitory curves against MP™ and the half-maximal
inhibitory concentrations (ICsqs) for each of the compounds. The
data clearly demonstrates that these compounds including ebse-
len are potent MP™ inhibitor with sub-micromolar levels of ICsy.
Some compounds are twice as effective for MP'© inhibition than
the parent ebselen, especially MR6-7-2 and MR6-18-2. All of
these compounds were also assessed for in vitro antiviral activity
against SARS-CoV-2 infected primate Vero cells. All of the
compounds tested were somewhat superior to ebselen with MR6-
31-2 being nearly three times more effective with an ECs, of 1.8
uM (Fig. 1g, Supplementary Fig. 1 and Supplementary Table 1).
These results indicate clear on-target interaction of these com-
pounds with MP™ with significant inhibitory power for SARS-
CoV-2 and as such potential for development as treatments for
COVID-19 patients.

Structures of MP™ with ebselen and MR6-31-2 reveal selenium
atom bound in catalytic site. The interaction of ebselen and its
derivative with MP™ was directly visualised by co-crystallisation of
organoselenium compounds with MP™. The structures of ligand-
free and MP™ complexes with ebselen and MR6-31-2 have been
solved at the resolution of 1.6-2.0 A. The statistics of data col-
lection and structure refinement is summarised in Table 1. All
MPO structures have the same packing in C2 space group with
only one MP™ protomer found in asymmetric unit. The global
structures of untreated and compound-treated MP™ are almost
identical with the root-mean-square deviations between 0.17 and
0.20 A (Fig. 2a). The MP™ catalytic site including Cys-histidine
dyad of individual structures are given in Fig. 2b-d. Electron
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Fig. 1 Chemical structures, in vitro MP' inhibition and cell-based antiviral assays of ebselen and five derivatives. In vitro MP'® inhibitory curves of a
ebselen, b MR6-7-2, ¢ MR6-17-1, d MR6-18-4, e MR6-26-2 and f MR6-31-2. Inhibition percentage plots are means of n = 3 measurements obtained over
three independent experiments and error bars representing the standard error of the mean. g ICsos of MP'® inhibition and ECsgs of viral replication in Vero
E6 cells. ICsos and ECsps are means (standard error of log(concentration)).
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Fig. 2 Crystallographic structures of ligand-free MP'® and the complexes with ebselen and MR6-31-2. a Cartoon representation of superimposed

structures of ligand-free MP'© (magenta), MP"©-ebselen (cyan) and MP™-MR6-31-2 (green). The MP' catalytic site is highlighted in a black box and the
global root-mean-square derivations (RMSDs) of the compound-treated structures to ligand-free MP'© are given in blue texts. Close-up views of catalytic
site of b ligand-free MP™©, ¢ MP®-ebselen and d MP"°-MR6-31-2. Electron density (2F,-F.) map is shown as grey mesh at 1. Anomalous signal of selenium
is shown as purple mesh at 3c. Selenium atom, conserved water and other waters are shown as orange, blue and red spheres, respectively. The close
contacts below 2.5 A and hydrogen bonds are shown as yellow and light blue dashes, respectively. The distances are illustrated by black double-headed

arrows.

According to crystallographic evidence, we noted that ebselen
and selenium-based derivatives have unusual mode of action by
selenation of MP™ catalytic dyad.

LC-MS characterization of salicylanilide by product generated
by hydrolysis of ebselen. Co-crystalised structures of MP™ with
ebselen and MR6-31-2 demonstrated that the compounds inhibits
MP*© by the selenation at Cys145 of catalytic dyad. This evidence
suggests that the compounds may be hydrolysed within MP™
active site that releases its phenolic by-product (salicylanilide for
ebselen, Fig. 3a). In order to identify the hydrolysis product
derived from MP™-ebselen adduct, LC/MRM-MS method was
optimized using standard salicylanilide. A representative chro-
matogram from standard salicylanilide (85.2 ng/mL) is shown in
Fig. 3a. Samples obtained from the incubation of ebselen showed
strong peaks at 6.37 min corresponding to salicylanilide (Fig. 3b).
The MS/MS spectrum of molecular ion at m/z 214 showed pro-
duct ions at m/z 121 and m/z 94, which are attributed to the ions
derived from the cleavage of the amide bond (Fig. 3c). To mea-
sure the levels of salicylanilide formed in the incubation, an
8-point calibration line was generated for salicylanilide in bovine
serum albumin (BSA). The measured concentration of salicyla-
nilide in these samples after 240 min was 1.28 ng/ml. The for-
mation of salicylanilide in the incubation of MP™ with ebselen is
time-dependent (Fig. 3d). LC-MS/MS analysis of the tryptic
digest of ebselen-treated human glutathione S-transferase-pi

revealed a Cys-ebselen adduct with a mass addition of 274.996
amu, while no such mass addition was obtained with Cys145 in
MPro peptide FTIKGSFLNGSCGSVGF (Supplementary Fig. 3).

Discussion

From a chemical mechanism of action perspective, we fully
expected to see the SARS-CoV-2 MP™ drug-adduct 2 from
ebselen 1, through nucleophilic attack of the Cys145 thiolate on
the electrophilic selenium centre as shown in Fig. 4. Unlike other
MPT© covalent inhibitors$21:22, the organic framework of ebselen
was not present in the co-crystallographic structures with evi-
dence of extrusion of selenium atom from the ebselen core at a
Cys protease active site. We propose that His41 can assist a water-
mediated attack on intermediate adduct 2 in an SyAr type
hydrolysis reaction with intermediate 3 possibly stabilised in a
manner akin to peptide hydrolysis tetrahedral intermediates
within the oxyanion hole of the active site. With increased activity
in the drug-design field in the covalent modification of catalytic
and non-catalytic thiols, there have been several reports of aro-
matic warheads tuned with leaving groups (halides for example)
to enable nucleophilic aromatic substitution, so the SyAr aspect
of the proposed mechanism is with precedent?3-2>, Based on this
mechanism, we would expect to see the generation of the
hydrolysis product 4. Using liquid chromatography mass spec-
trometry (LCMS) analysis of the SARS-CoV-2 MP™ and com-
parison with a commercial of 4, we were able to show that 4 is
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generated from ebselen by the enzyme in a time-dependent
manner. This provides strong support for our proposed
mechanism for selenation of the SARS-CoV-2 MP™ active site.

We have succeeded in obtaining co-crystallographic structure of
MP™® orown with ebselen and its derivative MR6-31-2, showing
selenium coordinates directly to Cys145 upon hydrolysis of the
organoselenium compounds. The clear target engagement paves
the way for the further development for more effective delivery to
the catalytic Cys and greater inhibition whilst having an acceptable
safety profile. The selectivity for Cys145 and sub-micromolar
potency for MP™ makes a strong case for benzoisoselenazolone to
be integrated into known MP™ inhibitor scaffolds. Though our
study is of clear immediate interest for SARS-CoV-2, it has wider
therapeutic applications of organoselenium compounds by che-
mical mechanism of the selenation of Cys of proteases in other
current zoonotic beta coronaviruses and those that may emerge in
the future.

Methods

Synthesis of compounds. Ebselen was obtained from a commercial supplier
(Sigma-Aldrich). Other lead compounds were produced and purified at Depart-
ment of Chemistry, University of Liverpool. Details of the synthesis of ebselen-
based derivatives have been described in Supplementary methods.

Recombinant SARS-CoV-2 MP' production. SARS-CoV-2 MP™ gene (GenBank:
MN908947.3, residues 3258-3569) containing modified human rhinovirus 3C
protease (HRV-3C) cleavage site and 6xHis tag (SGVTFQGPHHHHHH) at C-
terminal was cloned into pGEX-6P-1 vector at BamHI and Xhol sites using gene
synthesis and cloning services (GenScript, USA). The plasmid was transformed
into E. Coli strain BL21(DE3) and cultured at 37 °C in 2xYT broth until optical
density at 600 nm reaches 0.8. MP™ expression was induced by the addition of 0.5
mM isopropyl 8-d-1-thiogalactopyranoside followed by the incubation at 37 °C for
5 h. The bacteria pellet was harvested by centrifugation at 5000 x g, 4 °C for 20 min
and then re-suspended in lysis buffer (20 mM Tris pH 7.8, 150 mM NaCl) before
sonicated on ice. Cell lysate was collected by centrifugation at 30,000 x g, 4 °C for
30 min and then loaded onto a 5 mL NiNTA affinity column (HisTrap HP, GE
Healthcare) pre-equilibrated with the lysis buffer. MP™ bound to NiNTA resin was
washed with 100 mL of 5 mM imidazole in lysis buffer and then eluted with a linear
gradient of imidazole from 5 to 500 mM in lysis buffer, 100 mL. The fractions
containing MP' were pooled together, mixed with recombinant His-tag HRV-3C,
and dialysed against 20 mM Tris pH 7.8, 150 mM NaCl, 1 mM DTT at 4°C
overnight. The mixture containing MP™ was re-loaded through fresh NiNTA resin
to remove uncleaved protein and HRV-3C. The His-tag cleaved MP' in the flow-
through was buffer-exchanged to 20 mM Tris pH 8 using Amicon Ultra centrifugal
filter (MWCO. 10 kDa, Merck) and then loaded onto 5 mL Q Sepharose column
(HiTrap Q HP, GE Healthcare). The column was eluted with 100 mL of a linear
gradient from 0 to 200 mM NaCl in 20 mM Tris pH 8. The fractions containing
pure MP™ were buffer-exchanged to 20 mM Tris pH 7.8, 150 mM NaCl for activity
assay and crystallisation or 25 mM ammonium bicarbonate pH 7.5 for LC-MS
analysis. The concentration of MP™ was determined by ultraviolent absorption at
280 nm using a molar extinction coefficient of 32,890 M~lem~1.

MPre jnhibition activity assay. The inhibition activity assays were performed
using 0.2 uM MP*, 20 uM substrate and serial-diluted tested inhibitors in 60 uL
reaction buffer consisting of 50 mM Tris pH 7.3, 1 mM EDTA. Firstly, MP™ was
incubated with testing inhibitors at 30 °C for 15 min in reaction buffer. The
reaction was then initiated by the addition of a FRET-based peptide substrate
Mca-AVLQ|SGFR-K(Dnp)K (GL Biochem), using wavelengths of 320 and 405 nm
for excitation and emission, respectively. Fluorescence intensity was monitored
with an EnVision multimode plate reader (PerkinElmer). Initial rate was obtained
using the data from the first 10 min by linear regression. To exclude inhibitors
possibly acting as aggregators, a detergent-based control was performed by adding
0.01% freshly made-up Triton X-100 to the reaction at the same time. The ICs, was
calculated by plotting the inhibition rate against various concentrations of testing
inhibitor by using a four parameters dose-response curve in GraphPad Prism

8 software. All experiments were performed in triplicate.

Antiviral activity assay. A clinical isolate of SARS-CoV-2 (nCoV-2019BetaCoV/
Wuhan/WIV04/2019) was propagated in Vero E6 cells, and viral titer was deter-
mined by 50% tissue culture infective dose (TCIDsy) using immunofluorescence
assay. Briefly, Vero E6 cells were fixed with 4% paraformaldehyde and permea-
bilised with 0.5% Triton X-100 before blocked with 5% BSA for 2 h at 25 °C. The
blocked cells were incubated with the primary antibody of polyclonal antibody
against viral nucleocapsid protein of a bat SARS-CoV2° and followed by the second

antibody of Alexa 488-labeled goat anti-rabbit (Abcam). The nuclei were stained
with Hoechst 33258 dye (Beyotime) before visualised by fluorescence microscopy.
For the antiviral assay, pre-seeded Vero E6 cells (5 x 104 cells/well) were pre-
treated with the different concentration of compound for 1h and the virus was
subsequently added (MOI of 0.01) to allow infection for 1 h. At 24-h post infection,
the cell supernatant was collected and extracted viral RNA using MiniBEST Viral
RNA/DNA Extraction Kit (Tanaka, #RR047A). Reverse transcription was con-
ducted using PrimeScript RT Reagent Kit with gDNA eraser (Tanaka, #RR047A) to
prepare cDNA template. qRT-PCR analysis was carried out on StepOne Plus Real-
time PCR (Applied Biosystem) with TB Green Premix Ex Taq II (Tanaka,
#RR820A). Receptor binding domain (RBD) of spike gene was amplified by PCR
from the cDNA template with primers: RBD-F: 5-GCTCCATGGCCTAATATTA
CAAACTTGTGCC3'; RBD-R: 5-TGCTCTAGACTCAAGTGTCTGTGGATCAC-
3/, cloned into pMT/BiP/V5-His vector (Invitrogen) and used as the standard
plasmid. A standard curve was generated by the determination of copy numbers
from serially dilutions (103-10° copies) of the standard plasmid. The primers used
for quantitative PCR were RBD-qF1: 5-CAATGGTTTAACAGGCACAGG-3" and
RBD-qR1: 5-CTCAAGTGTCTGTGGATCACG-3'26, PCR amplification was per-
formed as follows: 95 °C for 5 min followed by 40 cycles consisting of 95 °C for 15,
54 °C for 155, 72 °C for 30 s. For cytotoxicity assays, pre-seeded Vero E6 cells were
treated with appropriate concentrations of compound. After 24 h, the relative
numbers of surviving cells were measured by the CCK8 (Beyotime) assay in
accordance with the manufacturer’s instructions. All experiments were performed
in triplicate, and all the infection experiments were performed at biosafety level-3.

Crystallisation and structure determination. Ebselen and other compounds were
prepared as 250 mM stocks in DMSO. 0.1 mM purified MP* was incubated with 1
mM compound at 4 °C overnight before concentrated to 5-15 mg/mL protein.
Hanging crystallisation drops were set by mixing of 3 uL of MP', 2.4 uL of
reservoir solution (200 mM ammonium chloride, 5% glycerol and 16-20% poly-
ethylene glycol (PEG) molecular weight 3350) and 0.6 pL of 1/2560 diluted micro-
seed stock. Micro-seed stock was prepared by crushing MP crystals obtained from
an initial hit (well A9 of JCSG+ screen: 200 mM NH,CI, 20% PEG3350, Molecular
Dimensions) with glass seed beads (Hampton Research). The crystallisation drops
were placed against 300 uL corresponding reservoir at 19 °C allowing vapour dif-
fusion. Plate crystals of MP'™ appeared among precipitation within a week. The
crystals were cryo-protected in 25% glycerol in reservoir solution before snap-
frozen in liquid nitrogen. X-ray diffraction experiments were carried out at 100 K
using 0.9795 A beam on 104 beamline of Diamond Light Source, UK. Identification
of selenium in active site was made by anomalous x-ray diffraction measurement in
the same crystal using 0.9795 A wavelength at 3.0 A resolution. The data were
integrated by using Xia2 DIALS?’ and scaled by using Aimless in CCP4 suite?8.
Phase problem was solved by molecular replacement with MOLREP2 in

CCP4 suite using a SARS-CoV-2 MP*® structure (PDB: 6Y2E) as an initial model.
Structure models were edited manually in COOT3? and refined by using Refmac53!
in CCP4 suite. Geometry and quality of final models were validated by using
MolProbity32. All molecular structures were visualised using Pymol software.

Liquid chromatography mass spectrometry (LCMS). 10 mg/mL MP™ in 25 mM
ammonium bicarbonate pH 7.5 (20 pL) was incubated with 1 mM ebselen at 37 °C
for 0, 2, and 4h. At the end of incubation, 2.5 mM acetaminophen (10 puL) was
added as an internal standard to normalize extraction. Then, loading and com-
pounds of interest were extracted by adding ice-cold acetone (250 uL). Standard
curve was constructed by spiking salicylanilide (concentration range: 0.1-0.8 uM)
into 10 mg/mL BSA solution. After centrifugation at 16,100 x g for 20 min, the
extracts were transferred to clean tubes and evaporated in a Speed Vac and
reconstituted in 50 uL 30% ACN/0.1% formic acid. A total of 10 uL of samples and
standards were analysed immediately by a QTRAP 5500 mass spectrometer (AB
Sciex) coupled with an Ultimate 3000 HPLC system (Dionex, ThermoScientific)
and a Kinetex C18 column (2.6 uM, C18, 50 mm x 2.1 mm, Phenomenex). The MS
experiments were conducted using electrospray ionization with positive ion
detection. A gradient programme of acetonitrile (5% for 1 min; 5-95% over 5 min;
95% for 2 min; 95-5% over 0.1 min; 5% for 4 min) in 0.1% formic acid (v/v) was
applied at a flow rate of 300 uL/min. The multiple reaction monitoring transitions
for each analyte were as following: salicylanilide 214.2/121.1 and 214.2/95; acet-
aminophen, 152.1/108.1; other MS parameters, such as voltage potential and col-
lision energy were optimized to achieve great sensitivity. Data acquisition and
quantification were performed using Analyst 1.5 software, Multi-Quant 3.0 (AB
Sciex) and Microsoft Excel.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Source data are provided with this paper. Other data are available from the
corresponding authors upon reasonable request. Crystal structures of ligand-free MPro
and MP' with ebselen and MR6-31-4 have been deposited in the Protein Data Bank
under accession codes: 7BAJ, 7BAK and 7BAL, respectively.
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